首页> 外文OA文献 >Emerging Topics in Learning from Noisy and Missing Data
【2h】

Emerging Topics in Learning from Noisy and Missing Data

机译:从嘈杂和缺失数据中学习的新课题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

While vital for handling most multimedia and computer vision problems, collecting large scale fully annotated datasets is a resource-consuming, often unaffordable task. Indeed, on the one hand datasets need to be large and variate enough so that learning strategies can successfully exploit the variability inherently present in real data, but on the other hand they should be small enough so that they can be fully annotated at a reasonable cost. With the overwhelming success of (deep) learning methods, the traditional problem of balancing between dataset dimensions and resources needed for annotations became a full-fledged dilemma. In this context, methodological approaches able to deal with partially described data sets represent a one-of-a-kind opportunity to find the right balance between data variability and resource-consumption in annotation. These include methods able to deal with noisy, weak or partial annotations. In this tutorial we will present several recent methodologies addressing different visual tasks under the assumption of noisy, weakly annotated data sets.
机译:尽管对于处理大多数多媒体和计算机视觉问题至关重要,但收集大规模的带完整批注的数据集是一项耗资源且通常难以承受的任务。确实,一方面,数据集必须足够大且具有足够的可变性,以便学习策略可以成功地利用真实数据中固有的可变性,但是另一方面,它们应该足够小,以便可以以合理的成本对其进行完全注释。随着(深度)学习方法的压倒性成功,在数据集尺寸和注释所需资源之间取得平衡的传统问题变成了一个完整的难题。在这种情况下,能够处理部分描述的数据集的方法论方法代表了一种千载难逢的机会,可以在注释中的数据可变性和资源消耗之间找到适当的平衡。这些包括能够处理嘈杂,弱或部分注释的方法。在本教程中,我们将介绍几种在嘈杂,弱注释数据集的假设下解决不同视觉任务的最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号